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APPENDIX A.  TECHNICAL DETAIL OF SPATIAL SUBSETTING
ALGORITHM

INTRODUCTION – POINT SPREAD FUNCTIONS, PIXELS, SPATIAL
SAMPLING, AND OFFSETS BETWEEN DIFFERENT SPATIAL DATA

In this Appendix, we want to be more precise about the relationship between the 1-km data and
the ¼-km data than we were in the body of the text.  We begin by discussing Point Spread
Functions (PSFs), which represent the angular weighting that relates a radiance pattern to the
signal sensed by a particular channel of a radiometer.  For fairly precise work, we summarize the
PSF of a given instrument by a centroid position and an ellipse that represents the angular
boundary within which ninety-five percent (or some other reasonable fraction) of a particular
pixel’s signal originates.  Next, we discuss the spatial pattern that these ellipses make when they
are projected onto a surface of reference, such as a geoid that describes the Earth’s surface (or
the top of the atmosphere at some reference altitude).  What we want from this disucssion is a
standardization of nomenclature, in which we approximate the mathematical complexities of the
real sampling by creating a roughly rectangular grid of cells.  The center of each cell is located at
the centroid of the ellipse for that pixel.  This conceptual framework allows us to think of pixels
as being organized into scan lines and pixels within each line.

With this conceptual framework, we can formulate the precise relationship between pixels with
different spatial resolutions.  We can also describe sampling algorithms that extract a fraction of
the pixels in the original images and place them in the arrays that contain the data in the subset.
As we have seen in the body of this text, we need an algorithm that can identify which pixels
from the original data belong in the lower resolution subset.  We also need algorithms that will
let us relate pixels in the subset at ¼-km resolution to pixels in the 1-km subset – or to the
original imager data set.  These indexing algorithms are important because we are trying to
arrange the higher resolution data so that 4 X 4 arrays of ¼-km pixels are spatially matched with
single pixels of 1-km data (or aggregates of ½-km data).

POINT SPREAD FUNCTIONS

With a fair degree of generality, the measurement of the radiance leaving the top of the
atmosphere involves having an instrument integrate the radiance’s spatial pattern over the field-
of-view of the instrument.  For careful work, we would probably start by describing the
distribution of radiance arriving at the instrument aperture as an angular function with respect to
the optical axis.  The light typically bounces through the optics of the instrument, arriving at the
detector for a particular channel, where the wavelengths of interest are (mostly) absorbed.  For
thermal instruments, such as CERES, an increment of light energy slightly increases the
temperature of the detector flake that absorbs it.  For quantum instruments, such as MODIS, the
increment of light energy alters the flow of electrons within the semi-conductor material in the
detector array.  Regardless of the detection mechanism, the instrument electronics integrates the
increment of signal over a small, but finite length of time, during which the instrument moves
along the orbital track – and perhaps changes slightly in angle.
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Figure 1.  Definition of Polar Angle, θ, used to describe the direction from which light
approaches the telescope with respect to the optical axis.  This figure does not show the
reference direction that quantifies the  azimuthal angle definition in this spherical polar
coordinate system.

Without descending too far into the mathematical details, we can describe the relationship
between the digital count in the measurement stream from a particular pixel and the angular
distribution of light with respect to the optical axis as

In this expression, D is the digital number (or CERES count) in the data stream.  dΩ  is a solid
angle increment (if θ  is the polar angle with respect to the optical axis and φ  is the azimuthal
angle, then dΩ  = dθ  sinθ  dφ ).  Figure 1 shows the relationship between the telescope optical
axis and a light ray arriving there.  PSF(Ω) is the Point Spread Function, and I(Ω) is the incident
radiance, which varies with direction.  The PSF is typically a bivariate Gaussian, i.e., a hill-like
shape where the size of the FOV is representable as an ellipse centered on the peak of the hill.
Figure 2 provides a schematic of this function.  It is hard to make square or hexagonal PSF’s.  To
do so requires sharply focusing optics, very rapidly responding detectors, and no detector FOV
motion.  Derivation or measurement of PSF’s is beyond the scope of this Appendix.
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Figure 2.  Point Spread Function for a Single Pixel in the optical axis coordinate system,
where distance from the original is proportional to θ.

SPATIAL SAMPLING PATTERNS

By design, most imaging instruments align their pixels in rectangular arrays.  The design
includes alignment of the array axes with respect to the orbital motion of the satellite over the
Earth.  Typically, one axis of the array is perpendicular to the orbital motion.  We call the pixels
that line up with each other in this direction a scan line.  Scan lines then follow one another in a
sequence along the orbit.  Figure 3 shows a three-dimensional representation of the geometry of
a single scan line of imager data with respect to the orbital motion.  The pixels are represented as
ellipses defined by the PSF, in accordance with the discussion in the previous section of this
Appendix.

Figure 3.  Description of Single Scan Line Geometry, showing the Satellite motion in orbit
and the pixels lined up in the scan direction.  This schematic view also indicates the first
pixel in the scan line and the last pixel in the line.

Satellite in Orbit

Scan Direction

First Pixel
Last Pixel
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To some extent, the geometric description is schematic.  The real imaging instruments may have
scans that go from right-to-left (when facing in the direction of satellite motion) or left-to-right.
The discrete mathematics we provide shortly is straightforward to adopt to the geometric
description.  In addition, the instrument may use linear detector arrays to provide data, where a
single scan of the instrument provides multiple scan lines (in the same spectral band).  From the
perspective of this description, what matters is that we number scan lines uniquely.  Thus, we
want the description to have sequentially numbered scan lines.

The geometric description in Figure 3 is convenient for representing images, in which we want to
identify the upper-left corner of the image with pixel 1 of scan line 1.  We assume that the scan
lines in a single spectral band have a constant number of pixels, NP.  We also assume that the
number of scan lines in an image is not larger than Max_Scan_Lines.  Figure 4 is an image
extracted from the MODIS image gallery, showing the Mississippi Delta region during daylight.
While the image is rectangular, the sides of the rectangle are not aligned with respect to parallels
of latitude and meridians of longitude.  In that frame of reference, the image would be slightly
skewed, with the satellite orbital path passing from north-northeast to south-southwest.  In terms
of pixel and scan line indexing scheme, pixel 1 in scan line 1 is located at the upper left corner of
the image.  Pixel NP in scan line Max_Scan_Lines is located at the lower right corner of the
image.

In terms of data structures, we now assume that an image like the one in figure 4 is representable
in terms of an array of a single type of numbers, typically 16-bit signed integers.  If we use C
array indexing conventions, so that the right-most index of an array advances more rapidly, we
can define an image as an array, such as

Max_Scan_Lines_1km : constant := 1015; -- 1-km MODIS
NP_1km             : constant := 2030; -- 1-km MODIS
type Single_Band_1km_Image is array
  (1 .. Max_Scan_Lines_1km, 1 .. NP_1km) of signed_16_bit_integer;

This convention stores the pixels in a particular scan line consecutively.

RELATIONSHIP OF PIXELS IN SUBSETS TO FULL-RESOLUTION
PIXELS

For CERES purposes, there are two important resolutions in MODIS data: 1-km and ¼-km.
While the original MODIS data have been obtained using three resolutions, 250 m, 500 m, and 1
km, the CERES team expects to use the MODIS team’s aggregation of 250 m data (for channels
1 and 2) and 500 m data (for channels 3, 4, 5, 6, and 7) to 1 km.  The major difficulty lies in the
relationship between these 1 km data and the 250 m data in channel 1.  We note that there may
be offsets in the position of pixels between these two resolutions.

To define a subset of 1 km data that reduces data volume, we want to choose every other pixel in
every other scan line.  The algorithm is straightforward, as we show in Listing 1.
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Figure 4.  False-Color MODIS Image of Mississippi Delta (MODIS1000001_md.jpg)
obtained from the MODIS image gallery (http://modis.gsfc.nasa.gov… ).  Pixel 1 in scan
line 1 is at the upper left of the image; pixel NP in scan  line Max_Scan_Lines is at the
lower right.
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-------------------------------------------------------------------
-- Type Definitions
-------------------------------------------------------------------
Max_Scan_Lines_1km   : constant := 1015; -- 1-km MODIS
NP_1km               : constant := 2030; -- 1-km MODIS
type Single_Band_1km_Image is array
  (1 .. Max_Scan_Lines_1km, 1 .. NP_1km) of signed_16_bit_integer;
MSS_SL_1km           : constant := Max_Scan_Lines_1km/2;
MSS_NP               : constant := NP_1km/2;
type Single_Band_SS_1km_Image is array
  (1 .. MSS_SL_1km, 1 .. MSS_NP) of of signed_16_bit_integer;

-------------------------------------------------------------------
-- Variables
-------------------------------------------------------------------
MODIS_1km_Image      : Single_Band_1km_Image;
Subsampled_1km_Image : Single_Band_SS_1km_Image;

…

-------------------------------------------------------------------
-- Code for Subsampling
-------------------------------------------------------------------

for Subsampled_Scan_Line in 1 .. MSS_SL_1km loop
  MODIS_1km_Scan_Line := 2*(Subsampled_Scan_Line – 1) + 1;
  For Subsampled_Pixel in 1 .. MSS_NP loop
    Subsampled_1km_Image(Subsampled_Scan_Line, Subsampled_Pixel)
      := MODIS_1km_Image(MODIS_1km_Scan_Line,
                         2*(Subsampled_Pixel – 1) + 1);
  end loop;
end loop;

Listing 1.  Ada-like Description of the Data Structures and Sampling Algorithm that would
sample a 1-km MODIS array to produce the subset for the CERES CID input.

From a programming standpoint, Listing 1 carefully identifies the arrays as being 16-bit signed
integers that start each index at a value of 1.  By using a sampling in the subset array indices, it is
possible to avoid complex indexing logic.  The correspondence between MODIS 1-km image
scan lines and the scan lines in the subsample, or between the pixels in these two images is
indicated in the code.  Table 1 provides some numerical examples of this correspondence, as
well as the general relationships between the two indexing sequences.  Note that if actual code
that builds the subsets uses arrays starting with zero instead of one, then these relationships need
to be adjusted accordingly.
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Table 1.   Index Correspondances Between 1-km MODIS Images and CERES 1-km Subsetted Images.

Scan Line Correspondence
MODIS 1-km Scan Line Index CERES 1-km Subsetted Line Index

1 1
3 2
5 3
7 4
9 5

… …
2*(SSL – 1) + 1 SSL

SL ((SL – 1)/2) + 1

Pixel Correspondence
MODIS 1-km Pixel Index CERES 1-km Subsetted Pixel Index

1 1
3 2
5 3
7 4
9 5

… …
2*(SP – 1) + 1 SP

P ((P – 1)/2) + 1

RELATIONSHIP OF PIXELS IN ¼-KM SUBSETS TO 1-KM PIXELS

The algorithm we just presented does not provide the subset of ¼-km pixels that we need in
order to understand the spatial variability within the 1-km footprints.  What we want are subsets
of a ¼-km resolution image in which each subset covers (most) of a 1-km pixel.  Unfortunately,
the ¼-km image may not be exactly collocated with the 1-km image.  Potentially, there is an
offset in the scan-line direction and another in the along-track direction.  (In a pessimistic mood,
one might worry about the possibility that the two arrays are slightly skewed with respect to each
other.  We will not consider this possibility further in this discussion – out of the expectation that
the instrument designers were well aware of this concern and have carefully designed it out of
the devices in orbit.)

The algorithm to create a subset of four-by-four ¼-km pixel blocks from the original ¼-km
MODIS images is more complex than the algorithm we just presented.  Most of this complexity
arises from the desire to use these blocks rather than a variant of the previous algorithm.
Geometric offsets add to this algorithmic complexity.  In addition, we need to specify algorithms
that relate a ¼-km pixel to the 1-km pixels in the subset, to the 1-km MODIS data, and to the ¼-
km original image – as well as the inverse relationships.  In the following paragraphs, we
develop the appropriate algorithm and provide some calculational results that allow us to check
the relationships when they have been programmed to create the subset.  Our approach will be
based on using simple, discrete functions to relate different  pixel index relationships to each
other.  Once we have such a relationship for one dimension, we can apply the same logic to the
second dimension.
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Understanding the Geometric Relationships Between ¼-km Subsets and 1-km Subsets

What we want from the ¼-km data is the ability to check on the spatial variability within a 1-km
pixel.  This means that we want to center the ¼-km block on the 1-km pixel.  It is easy to see that
if we have a linear offset, ∆O, between the ¼-km pixels and the 1-km pixels, then we have the
same offset between the desired ¼-km subset arrays and the 1-km pixels.  As a result, we can
simplify the subsetting problem to one that deals with offsets in array indices.  We do not
propose to deal with the complexities of resampling (where we would have to know the MODIS
PSF and would have a much more complex computation to provide a rigorous resampling-
deconvolution algorithm).

We need to provide a more careful definition of geolocation offsets.  Let us consider first an
offset in the along-track direction.  If the 1-km pixels are offset in the positive along-track
direction (so the 1-km pixel’s center is moved a distance ∆O in the increasing along-track
direction), we can define an index offset, O, as

O =  INT(∆O / 250m)

In words, if the 1-km pixels are slid 250m down the orbit track, the offset is 1; if they slide 500
m down the track, the offset is 2, and so on.  We expect the pixels we choose from the ¼-km data
to respond to the pixel index offset, in the sense that if O is 2, we need to select the subset pixels
from two ¼-km scan lines further down the image.

Likewise, if the linear offset is in the cross-track direction, then we take a positive index offset as
moving the ¼-km pixels we want to sample in the direction of the increasing index.  In other
words, for a positive offset in the 1-km data the ¼-km samples we want to extract are to the right
of where they would be in Figure 4 if there were no offset in that direction.

To derive the relationship between the original ¼-km pixels and the subsetted ¼-km pixels, we
can consider two one-dimensional arrays of pixel indexes.  The first array includes the indexes
for the original data, and therefore starts at 1 and increments sequentially through the remaining
indices.  The second array has the same size, but puts nothing in the unselected elements and an
appropriate index in the selected ones.  In the latter case, the selected cell with the smallest array
index has a 1 in its element.  The second selected cell gets a 2, the third a 3, and so on.  In the
deep interior of the array, the elements will have sequences of four successive elements that are
part of the subset, followed by four empty elements, then four more successive elements, and so
on.

Table 2 illustrates this notion for no offset, for an offset of +2 pixels, and for an offset of –2
pixels.  The left pair of columns shows a relatively simple subsetting pattern – groups of four
pixels, with the indexes of the first selected element in a group increasing by four.  The middle
pair of columns shows what happens to the selection when the 1-km pixels are shifted down the
satellite track by two pixels.  The pattern is similar, but offset.  In the rightmost pair of columns,
the first 1-km pixel has moved partially above the ¼-km data.  Thus, we only have two samples
from the ¼-km data that provide information about the first 1-km pixel.  Thereafter, the “block
of 4” pattern resumes.
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Table 2.  Illustration of Pixel Indices for Original ¼-km Image and for Subsets with Three Different Offsets.

Original   Subset w Original   Subset w Original   Subset w
  No Offset   +2 Offset   -2 Offset

    1       1      1       1        1
    2       2      2       2        2
    3       3      3        1       3
    4       4      4        2       4
    5      5        3       5
    6      6        4       6
    7      7       7        3
    8      8       8        4
    9      5      9       9        5
  10      6    10     10        6
  11      7    11        5     11
  12      8    12        6     12
  13    13        7     13
  14    14        8     14
  15    15     15        7
  16    16     16        8
  17      9    17     17        9
  18    10    18     18      10
  19    11    19        9     19
  20    12    20      10     20

What we need is an algorithmic description that will give us these patterns.  We have two
alternatives: use the original index and compute the subset index (with a 0 output from the
computation identifying which pixels should not enter the subset), or use the subset index as the
base and compute the original index that enters the subset.  The latter is computationally
preferable because there are only half as many elements in the array and because we do not have
to insert a conditional statement in the loop to check for elements that are not subset – provided
we can come up with a sufficiently simple algorithm.  Perhaps perversely, we start with by
showing how the algorithm should work if the MODIS ¼-km pixel indexes are used to count
position in the array.  Then, we use the CERES subset indexes for this purpose.

Subsetting Functions for Indexing in the Original ¼-km MODIS Image

If we ignore the comments on computational efficiency, we can build an algorithm that will loop
through the ¼-km data for all of the lines (or all of the pixels) – giving the proper index for the
subsetted image where the data should be pulled into the subset and zero otherwise. To build the
algorithm in terms of the original MODIS index, we note that the effect of the offset is to allow
us to create an index array whose value is simply offset from the original index.

Let us start by defining the function
∆ : if O >= 0 then

∆ = 1;
  else

∆ = 1 – MOD(ABS(O), 8);
  end if;
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  Then, define

X = MI – O – 1

To extract appropriate values from X, we form a comb-like filter by first computing

R = 7 – MOD(X, 8)
and then

U = TRUNC(R/4)
Next, let

T = 4*TRUNC(X/8)
By writing

CI = U*(T + Q + ∆)

we have defined a function that computes the ¼-km subset indexes, CI, from the original ¼-km
indexes, MI.

Table 3a provides the sequences for the various variables we have defined when the offset is 0.
Table 3b shows these sequences when the offset is +2; 3c when it is –2.  Based on experience
with a spreadsheet form of this computation, we must keep the offset between –4 and +4 in order
for it to work correctly.  This should be a satisfactory range given the design of the instrument.

Once we have CI, we can compute the equivalent indices for 1-km CERES subset samples by
using the following algorithm:

∆’ : if O >= 0 then
∆’ = 1;

  else
∆’ = 1 – MOD(ABS(O), 4);

  end if;
followed by

C_1km = U*TRUNC[(CI – ∆’)/4] + 1

and

M_1km = U*{2*TRUNC[(CI – ∆’)/4] + 1}

Note that we can use this algorithm in a sequence such as that shown in Listing 2.
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Table 3a.  Illustration of Intermediate Variables When O = 0.

In this case, ∆ = 1 and ∆’ = 1

MI   X R U T CI C_1km  M_1km
  1   0 7 1   0   1     1     1
  2   1 6 1   0   2     1     1
  3   2 5 1   0   3     1     1
  4   3 4 1   0   4     1     1
  5   4 3 0   0   0     0     0
  6   5 2 0   0   0     0     0
  7   6 1 0   0   0     0     0
  8   7 0 0   0   0     0     0
  9   8 7 1   4   5     2     3
10   9 6 1   4   6     2     3
11 10 5 1   4   7     2     3
12 11 4 1   4   8     2     3
13 12 3 0   4   0     0     0
14 13 2 0   4   0     0     0
15 14 1 0   4   0     0     0
16 15 0 0   4   0     0     0
17 16 7 1   8   9     3     5
18 17 6 1   8 10     3     5
19 18 5 1   8 11     3     5
20 19 4 1   8 12     3     5
21 20 3 0   8   0     0     0
22 21 2 0   8   0     0     0
23 22 1 0   8   0     0     0
24 23 0 0   8   0     0     0
25 24 7 1 12 13     4     7
26 25 6 1 12 14     4     7
27 26 5 1 12 15     4     7
28 27 4 1 12 16     4     7
29 28 3 0 12   0     0     0
30 29 2 0 12   0     0     0
31 30 1 0 12   0     0     0
32 31 0 0 12   0     0     0
33 32 7 1 16 17     5     9
34 33 6 1 16 18     5     9
35 34 5 1 16 19     5     9
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Table 3b.  Illustration of Intermediate Variables When O = 2.

In this case, ∆ = 1 and ∆’ = 1

MI   X R U T CI C_1km  M_1km
  1  -2 1 0   0   0     0     0
  2  -1 0 0   0   0     0     0
  3   0 7 1   0   1     1     1
  4   1 6 1   0   2     1     1
  5   2 5 1   0   3     1     1
  6   3 4 1   0   4     1     1
  7   4 3 0   0   0     0     0
  8   5 2 0   0   0     0     0
  9   6 1 0   0   0     0     0
10   7 0 0   0   0     0     0
11   8 7 1   4   5     2     3
12   9 6 1   4   6     2     3
13 10 5 1   4   7     2     3
14 11 4 1   4   8     2     3
15 12 3 0   4   0     0     0
16 13 2 0   4   0     0     0
17 14 1 0   4   0     0     0
18 15 0 0   4   0     0     0
19 16 7 1   8   9     3     5
20 17 6 1   8 10     3     5
21 18 5 1   8 11     3     5
22 19 4 1   8 12     3     5
23 20 3 0   8   0     0     0
24 21 2 0   8   0     0     0
25 22 1 0   8   0     0     0
26 23 0 0   8   0     0     0
27 24 7 1 12 13     4     7
28 25 6 1 12 14     4     7
29 26 5 1 12 15     4     7
30 27 4 1 12 16     4     7
31 28 3 0 12   0     0     0
32 29 2 0 12   0     0     0
33 30 1 0 12    0     0     0
34 31 0 0 12   0     0     0
35 32 7 1 16 17     5     9
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Table 3c.  Illustration of Intermediate Variables When O = -2.

In this case, ∆ = -1 and ∆’ = -1

MI   X R U T CI C_1km   M_1km
  1   2 5 1   0   1     1     1
  2   3 4 1   0   2     1     1
  3   4 3 0   0   0     0     0
  4   5 2 0   0   0     0     0
  5   6 1 0   0   0     0     0
  6   7 0 0   0   0     0     0
  7   8 7 1   4   3     2     3
  8   9 6 1   4   4     2     3
  9 10 5 1   4   5     2     3
10 11 4 1   4   6     2     3
11 12 3 0   4   0     0     0
12 13 2 0   4   0     0     0
13 14 1 0   4   0     0     0
14 15 0 0   4   0     0     0
15 16 7 1   8   7     3     5
16 17 6 1   8   8     3     5
17 18 5 1   8   9     3     5
18 19 4 1   8 10     3     5
19 20 3 0   8    0     0     0
20 21 2 0   8   0     0     0
21 22 1 0   8   0     0     0
22 23 0 0   8   0     0     0
23 24 7 1 12 11     4     7
24 25 6 1 12 12     4     7
25 26 5 1 12 13     4     7
26 27 4 1 12 14     4     7
27 28 3 0 12   0     0     0
28 29 2 0 12   0     0     0
29 30 1 0 12   0     0     0
30 31 0 0 12   0     0     0
31 32 7 1 16 15     5     9
32 33 6 1 16 16     5     9
33 34 5 1 16 17     5     9
34 35 4 1 16 18     5     9
35 36 3 0 16   0     0     0
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function CERES_250m_Subset_Scan_Line(
                MODIS_250m_Index : in     integer;
                D_AT             : in     integer)
         return integer
is
  Delta : integer;
  X     : integer;
  R     : integer;
  U     : integer;
  T     : integer;
  CI    : integer;
begin
  if D_AT >= 0 then

Delta := 1;
  else

Delta :== 1 – MOD(ABS(D_AT), 8);
  end if;
  X := MODIS_250m_Index – D_AT – 1;
  R := 7 – MOD(X, 8);
  U := TRUNC(R/4);
  T := 4*TRUNC(X/8);
  CI := U*(T + Q + Delta);
  return CI;
end CERES_250m_Subset_Scan_Line;

function CERES_250m_Subset_Pixel(
                MODIS_250m_Index : in     integer;
                D_CT             : in     integer)
         return integer
is
  Delta : integer;
  X     : integer;
  R     : integer;
  U     : integer;
  T     : integer;
  CI    : integer;
begin
  if D_AT >= 0 then

Delta := 1;
  else

Delta :== 1 – MOD(ABS(D_CT), 8);
  end if;
  X := MODIS_250m_Index – D_CT – 1;
  R := 7 – MOD(X, 8);
  U := TRUNC(R/4);
  T := 4*TRUNC(X/8);
  CI := U*(T + Q + Delta);
  return CI;
end CERES_250m_Subset_Pixel;

Listing 2.  Ada-like Description of the Sampling Algorithm that extracts a 1/4-km MODIS
array to produce the subset for the CERES CID input data. Note that
Delta_Along_Track and Delta_Cross_Track should be confined to the range –3 .. +3 to
work properly.  This should not be a problem in practice, since the offsets are currently
believed to be between 1 pixel and 2 pixels in magnitude.



15

-------------------------------------------------------------------
-- Code for Subsampling 1/4–km MODIS image to produce CERES subset
-------------------------------------------------------------------
for MI in 1 .. MSS_SL_250m loop
  Read_In_Scan_Line(MI, MODIS_250m_Image);
  CI := CERES_250m_Subset_Scan_Line(MI, Delta_Along_Track);
  if CI > 0 then
    for MI_Pix in 1 .. MSS_NP_250m loop
      CI_Pix := CERES_250m_Subset_Pixel(MI_Pix, Delta_Cross_Track);
      if CI_Pix > 0 then
        CERES_250m_Subset_Image(CI, CI_Pix)
          := MODIS_250m_Image(MI, MI_Pix);
      end if;
    end loop;
  end if;
end loop;

Listing 2 (cont’d).  Ada-like Description of the Sampling Algorithm that extracts a 1/4-km
MODIS array to produce the subset for the CERES CID input data.  Note the logic
required to deal with 0 index values returned by the index calculation functions,
indicating that certain lines or pixels can be skipped.  Because of the difference in
behavior of the index calculations for positive and negative offsets, an algorithm that
must accept either cannot avoid the logic indicated by the boled ‘if’ constructions.

In producing subsets, the algorithm does not need special logic if the indexing uses the ¼-km
scan lines and pixels in the subset – avoiding the scan lines and pixels that don’t have to enter the
subset.  In this case, we need

∆ : if O >= 0 then
∆ = 1;

  else
∆ = 1 – MOD(ABS(O), 4);

  end if;

We then run the indexes over CI, computing the quantities

u = TRUNC[(CI - ∆)/4]
Next, let

r = MOD[(CI - ∆), 4] + 1
Then

MI = 8*d + r + O

To obtain the 1-km indices, we simply use

C_1km = TRUNC[(CI – ∆)/4] + 1
and

M_1km = 2*TRUNC[(CI – ∆)/4] + 1

Note that we can use this algorithm in a sequence such as that shown in Listing 3.
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-------------------------------------------------------------------
-- Variables for Subsampling 1/4–km MODIS image to produce CERES subset
-------------------------------------------------------------------
D_AT     : integer;
D_CT     : integer;
Delta    : integer;
Delta_CT : integer;
d        : integer;
r        : integer;
CI       : integer;
CI_Pix   : integer;
MI       : integer;
MI_Pix   : integer;

…

-------------------------------------------------------------------
-- Code for Subsampling 1/4–km MODIS image to produce CERES subset
-------------------------------------------------------------------
if D_AT >= 0 then
  Delta := 1;
else
  Delta :== 1 – MOD(ABS(D_AT), 4);
end if;
if D_CT >= 0 then
  Delta_CT := 1;
else
  Delta_CT :== 1 – MOD(ABS(D_CT), 4);
end if;
for CI in 1 .. MSS_SL_250m/2 loop
  d := TRUNC((CI – Delta)/4);
  r := MOD((CI – Delta), 4) + 1;
  MI := 8*d + r + D_AT;
  Read_In_Scan_Line(MI, MODIS_250m_Image);
  for CI_Pix in 1 .. MSS_NP_250m loop
    d := TRUNC((CI_Pix – Delta_CT)/4);
    r := MOD((CI_Pix – Delta_CT), 4) + 1;
    MI_Pix := 8*d + r + D_CT;

          MODIS_250m_Subset_Image(MI, MI_Pix)
      := CERES_250m_Image(CI, CI_Pix);
  end loop;
end loop;

Listing 3.  Ada-like Description of the Sampling Algorithm that builds a 1-km blocked subset
from a 1/4-km MODIS image array.  Note that we do not require branching statements
in the core of the algorithm in order to avoid scan lines or pixels that should not appear
in the subset.  Some care is still required, since Delta_AT and Delta_CT should be
confined to the range –3 .. +3 to work properly.  This should not be a problem in practice,
since the offsets are currently believed to be between 1 pixel and 2 pixels in magnitude.

Tables 4a, 4b, and 4c provide numerical test cases for this alternate indexing scheme.  Note the
lack of 0 entries in the CI column, indicating that using CI does not index MI rows or pixels
when these will not enter the1/4-km subset.  These algorithms are written under the assumption
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that the arrays start with 1.  If they are being translated into C, come revisions will be necessary
in order to ensure proper relationships between the four possible image indexes.

Table 4a.  Illustration of Indexing Using CI as the independent variable with O = 0.

In this case, ∆ = 1

CI   d r MI C_1km  M_1km
  1   0 1   1     1     1
  2   0 2   2     1     1
  3   0 3   3     1     1
  4   0 4   4     1     1
  5   1 1   9     2     3
  6   1 2 10     2     3
  7   1 3 11     2     3
  8   1 4 12     2     3
  9   2 1 17     3     5
10   2 2 18     3     5
11   2 3 19     3     5
12   2 4 20     3     5
13   3 1 25     4     7
14   3 2 26     4     7
15   3 3 27     4     7
16   3 4 28     4     7
17   4 1 33     5     9
18   4 2 34     5     9
19   4 3 35     5     9
20   4 4 36     5     9
21   5 1 41     6   11
22   5 2 42     6   11
23   5 3 43     6   11
24   5 4 44     6   11
25   6 1 49     7   13
26   6 2 50     7   13
27   6 3 51     7   13
28   6 4 52     7   13
29   7 1 57     8   15
30   7 2 58     8   15
31   7 3 59     8   15
32   7 4 60     8   15
33   8 1 65     9   17
34   8 2 66     9   17
35   8 3 67     9   17
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Table 4b. .  Illustration of Indexing Using CI as the independent variable with O = 2.

In this case, ∆ = 1

CI   d r MI C_1km  M_1km
  1   0 1   3     1     1
  2   0 2   4     1     1
  3   0 3   5     1     1
  4   0 4   6     1     1
  5   1 1 11     2     3
  6   1 2 12     2     3
  7   1 3 13     2     3
  8   1 4 14     2     3
  9   2 1 19     3     5
10   2 2 20     3     5
11   2 3 21     3     5
12   2 4 22     3     5
13   3 1 27     4     7
14   3 2 28     4     7
15   3 3 29     4     7
16   3 4 30     4     7
17   4 1 35     5     9
18   4 2 36     5     9
19   4 3 37     5     9
20   4 4 38     5     9
21   5 1 43     6   11
22   5 2 44     6   11
23   5 3 45     6   11
24   5 4 46     6   11
25   6 1 51     7   13
26   6 2 52     7   13
27   6 3 53     7   13
28   6 4 54     7   13
29   7 1 59     8   15
30   7 2 60     8   15
31   7 3 61     8   15
32   7 4 62     8   15
33   8 1 67     9   17
34   8 2 68     9   17
35   8 3 69     9   17
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Table 3c. .  Illustration of Indexing Using CI as the independent variable with O = -2.

In this case, ∆ = 1

CI   d r MI C_1km  M_1km
  1   0 3   1     1     1
  2   0 4   2     1     1
  3   1 1   7     2     3
  4   1 2   8     2     3
  5   1 3   9     2     3
  6   1 4 10     2     3
  7   2 1 15     3     5
  8   2 2 16     3     5
  9   2 3 17     3     5
10   2 4 18     3     5
11   3 1 23     4     7
12   3 2 24     4     7
13   3 3 25     4     7
14   3 4 26     4     7
15   4 1 31     5     9
16   4 2 32     5     9
17   4 3 33     5     9
18   4 4 34     5     9
19   5 1 39     6   11
20   5 2 40     6   11
21   5 3 41     6   11
22   5 4 42     6   11
23   6 1 47     7   13
24   6 2 48     7   13
25   6 3 49     7   13
26   6 4 50     7   13
27   7 1 55     8   15
28   7 2 56     8   15
29   7 3 57     8   15
30   7 4 58     8   15
31   8 1 63     9   17
32   8 2 64     9   17
33   8 3 65     9   17
34   8 4 66     9   17
35   9 1 71   10   19


